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Abstract
A Lie-algebraic approach successfully used to describe one-dimensional Bloch
oscillations in a tight-binding approximation is extended to two dimensions.
This extension has the same algebraic structure as the one-dimensional case
while the dynamics shows a much richer behaviour. The Bloch oscillations are
discussed using analytical expressions for expectation values and widths of the
operators of the algebra. It is shown under which conditions the oscillations
survive in two dimensions and the centre of mass of a wavepacket shows a
Lissajous-like motion. In contrast to the one-dimensional case, a wavepacket
shows systematic dispersion that depends on the direction of the field and the
dispersion relation of the field-free system.

PACS numbers: 03.65.−w, 03.65.Fd

1. Introduction

The quantum dynamics of a particle in a tilted periodic potential, the so-called Wannier–Stark
system, has been the subject of investigation since the beginning of quantum mechanics [1–3].
In the early years the motivation was to understand the properties of an electric current in
solid crystals, while in recent years the realization of semiconductor superlattices and the
experimental progress in manipulating cold atoms resp. Bose–Einstein condensates in optical
lattices has motivated new theoretical studies in this field (see [4] and the references therein).
Especially the generation of terahertz radiation in semiconductor superlattices offers the
possibility for future technical applications of Wannier–Stark systems [5]. Bloch oscillations
are one of the striking phenomena in such systems and an example for a counter-intuitive
behaviour in quantum mechanics [4, 6–12]. While in [4, 6–8] the one-dimensional case is
discussed analytically in a single-band tight-binding model, in [9–12] two-dimensional Bloch
oscillations are considered, however, only partially in an analytical treatment.

The aim of this paper is to supplement the discussion of Bloch oscillations in two-
dimensional lattices by an analytic treatment within the tight-binding model. The Lie-algebraic
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approach to the tight-binding model in [6] is extended to two space dimensions using the
techniques of the algebraic structure theory. Within this model, not only the nearest neighbour
couplings along the axes (the so-called von-Neumann neighbourhood) is taken into account,
but also the interactions along the diagonals (Moore neighbourhood) will be considered and
explicit expressions for the expectation values of the position operators will be derived. It is
shown that Bloch oscillations in two dimensions occur only for special initial conditions and
that typically the oscillation is superposed by a directed motion orthogonal to the field. On
the basis of this examination the results can be extended to the single-band model where all
couplings within one band are taken into account.

A two-dimensional Wannier–Stark system can be described by a Hamiltonian with a
periodic potential V and an additional linear potential:

Ĥ = p̂2

2
+ V (r̂) + F · r̂ with V (r + rn) = V (r) (1)

and rn = n1e1 + n2e2, ni ∈ Z. For simplicity the period in both directions is set equal
to 1. The force F = F0 + Fω(t) consists of a static part and a part with an arbitrary time
dependence. A convenient approximation is to expand the Hamiltonian in a basis of Wannier
functions |n, l〉 which are localized at site n = (n1, n2) of the periodic potential. The index
l labels the different bands. Taking into account only a single band and the coupling between
adjacent sites, the Hamiltonian for the one-dimensional system can be written as

Ĥ = �

4

+∞∑
m=−∞

(|m〉〈m + 1| + |m〉〈m − 1|) + F

+∞∑
m=−∞

m|m〉〈m|, (2)

where |m〉 are the one-dimensional Wannier states and � is the band width of the energy
dispersion relation for the field-free system. An alternative tight-binding approach using an
expansion in the eigenstates of the Wannier–Stark Hamiltonian (1) for a constant field can be
found in [13].

The tight-binding Hamiltonian can be easily extended to two dimensions using the two-
dimensional Wannier states |m, n〉 with 〈m, n|m′, n′〉 = δm′,mδn′,n. Then, the Hamiltonian
reads

Ĥ = �1

4

+∞∑
m,n=−∞

(|m, n〉〈m + 1, n| + |m, n〉〈m − 1, n|)

+
�2

4

+∞∑
m,n=−∞

(|m, n〉〈m, n + 1| + |m, n〉〈m, n − 1|)

+
+∞∑

m,n=−∞
(F1m + F2n)|m, n〉〈m, n|. (3)

Introducing the operators

N̂1 =
+∞∑

m,n=−∞
m|m, n〉〈m, n|, N̂2 =

+∞∑
m,n=−∞

n|m, n〉〈m, n| (4)

and

K̂1 =
+∞∑

m,n=−∞
|m, n〉〈m + 1, n|, K̂2 =

+∞∑
m,n=−∞

|m, n〉〈m, n + 1| (5)

together with their adjoint operators K̂
†
1 and K̂

†
2, the notation can be simplified as

Ĥ = �1

4

(
K̂1 + K̂

†
1

)
+

�2

4

(
K̂2 + K̂

†
2

)
+ F1N̂1 + F2N̂2. (6)
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The operators K̂1 and K̂2 are unitary, i.e. they fulfil the relation

K̂−1
j = K̂

†
j for j = 1, 2 (7)

and describe the coupling of adjacent sites along the two axes. The Hermitian operators N̂1

and N̂2 can be interpreted as ‘position’ operators in direction 1 resp. 2.
For later convenience, the variable f = F /h̄ will be used instead of the field F = (F1, F2)

and it is assumed that the components f1 and f2 of the field f have a rational ratio, i.e.
f1

f2
= q

r
with q, r ∈ Z coprime.

Then, the field can be written as(
f1

f2

)
= f√

q2 + r2

(
q

r

)
(8)

with f = |f |. We will assume that the direction of the field is constant in time, whereas its
magnitude f can be time dependent. For the example of Bloch oscillations studied below, the
field is constant in time.

2. The Lie algebra

The commutators of the operators N̂j and K̂j can be directly calculated using equations (4)
and (5) and the orthogonality of the Wannier functions. The non-vanishing commutators are

[K̂j , N̂j ] = K̂j ,
[
K̂

†
j , N̂j

] = −K̂
†
j for j = 1, 2. (9)

So the operators {N̂1, K̂1, K̂
†
1, N̂2, K̂2, K̂

†
2} form a Lie algebra

L = L1 ⊕ L2 = {
N̂1, K̂1, K̂

†
1

} ⊕ {
N̂2, K̂2, K̂

†
2

}
(10)

with [L1,L2] = {0}. Since this algebra can be decoupled into two disjoint algebras which
correspond to the Lie algebra of the one-dimensional tight-binding system [6], this expansion
is trivial. One can achieve further insight into the dynamics of the system by extending the
algebra by the operators

K̂1K̂2 =
+∞∑

m,n=−∞
|m, n〉〈m + 1, n + 1|, (11)

K̂1K̂
†
2 =

+∞∑
m,n=−∞

|m, n〉〈m + 1, n − 1| (12)

together with the adjoints K̂
†
1K̂

†
2 and K̂

†
1K̂2. The ordering of these operators is arbitrary since

they commute. Adding these operators to the system takes couplings between adjacent sites
along the main diagonals into account and, from the algebraic point of view, couples both
algebras L1 and L2. The non-vanishing commutators for these operators are

[K̂1K̂2, N̂1] = K̂1K̂2 [K̂1K̂2, N̂2] = K̂1K̂2[
K̂

†
1K̂

†
2, N̂1

] = −K̂
†
1K̂

†
2

[
K̂

†
1K̂

†
2, N̂2

] = −K̂
†
1K̂

†
2[

K̂1K̂
†
2, N̂1

] = K̂1K̂
†
2

[
K̂1K̂

†
2, N̂2

] = −K̂1K̂
†
2[

K̂
†
1K̂2, N̂1

] = −K̂
†
1K̂2

[
K̂

†
1K̂2, N̂2

] = K̂
†
1K̂2.

(13)

Thus, this set of operators closes under commutation and forms a Lie algebra

L = {
N̂1, K̂1, K̂

†
1, N̂2, K̂2, K̂

†
2, K̂1K̂2, K̂

†
1K̂

†
2, K̂1K̂

†
2, K̂

†
1K̂2

}
(14)
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with the corresponding Hamiltonian

Ĥ = �1

4

(
K̂1 + K̂

†
1

)
+

�2

4

(
K̂2 + K̂

†
2

)
+

�3

4

(
K̂1K̂2 + K̂

†
1K̂

†
2 + K̂1K̂

†
2 + K̂

†
1K̂2

)
+ h̄f1N̂1 + h̄f2N̂2. (15)

The factors �k, k = 1, 2, 3, are the band widths of the dispersion relation in the direction of
the axes (�1,�2) resp. the main diagonals (�3). A discussion of the spectral properties of
such two-dimensional tight-binding Hamiltonians taking into account various couplings can
be found in [14].

For later convenience we introduce the notation

K̂u,v = K̂u
1 K̂v

2 with u, v ∈ Z, (16)

where the commutators read

[K̂u,v, N̂j ] = εu,v,j K̂u,v for j = 1, 2; u, v ∈ Z (17)

with εu,v,j = uδj,1 + vδj,2. Then the Lie algebra can be written as (cf equation (7))

L = {N̂1, N̂2, K̂u,v|(u, v) ∈ M} (18)

with

M = {−1, 0, 1}2 \ {(0, 0)}, (19)

i.e. the identity operator Î = K̂0,0 is not included in the algebra. In section 5 the algebra will
be extended by taking into account all possible operator products. Then, the Lie algebra still
has the form (18), but with M = Z

2 \ {(0, 0)}.
In this algebraic approach to the tight-binding model, all calculations can be done without

using the explicit representations of the operators in (4) and (5), only making use of the
commutation relations in equation (17). Therefore the calculations are decoupled from the
explicit representation of the algebra in the tight-binding model and the results can be applied
to every system with this underlying operator algebra. Furthermore, the algebraic approach
to the tight-binding model allows a deeper insight into the simple structure of the system
independent of the choice of a basis.

3. The time evolution operator

As described in [6, 15], the Lie algebra can be decomposed into a semidirect sum, L = I⊂+S,
with

I = {K̂u,v|(u, v) ∈ M} (20)

and

S = {N̂1, N̂2}. (21)

Here, I is an ideal of the Lie algebra and S is a subalgebra. The Hamiltonian can be written
as a sum of operators, Ĥ = Ĥ S + Ĥ I , with Ĥ S ∈ S and Ĥ I ∈ I:

Ĥ S = h̄f1N̂1 + h̄f2N̂2, (22)

Ĥ I = �1

4
(K̂1,0 + K̂−1,0) +

�2

4
(K̂0,1 + K̂0,−1)

+
�3

4
(K̂1,1 + K̂−1,−1 + K̂1,−1 + K̂−1,1). (23)
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In order to find the time evolution operator Û with

ih̄
dÛ

dt
= Ĥ Û , (24)

one can make use of the algebraic structure, which allows a factorization of the evolution
operator as Û = Û SÛ I with

ih̄
dÛS

dt
= Ĥ SÛS, ih̄

dÛI

dt
= (

Û−1
S Ĥ I ÛS

)
ÛI (25)

(see [15–17] for the details). Thus, the problem of calculating the time evolution operator is
split into two parts. First, one has to solve the differential equation for the subalgebra S and
afterwards solve the problem for I.

Before we begin with the derivation of the evolution operator, we introduce the so-called
�̂-evolved operator Â, defined by

ezad�̂Â = ez�̂Â e−z�̂

= Â + z[�̂, Â] +
z2

2!
[�̂, [�̂, Â]] +

z3

3!
[�̂, [�̂, [�̂, Â]]] + · · · , (26)

with �̂, Â ∈ L.
For the Lie algebra L these expressions can be calculated directly using equation (17).

The non-trivial relations are

ezadK̂u,v N̂j = N̂j + zεu,v,j K̂u,v and ezadN̂j K̂u,v = e−zεu,v,j K̂u,v. (27)

After these preparations the first equation in (25) can be solved and yields

Û S(t) = e−i(η(1)
t N̂1+η

(2)
t N̂2) (28)

with

η
(1)
t =

∫ t

0
f1(τ ) dτ = q√

q2 + r2

∫ t

0
f (τ) dτ = qηt ,

η
(2)
t =

∫ t

0
f2(τ ) dτ = rηt ,

ηt = 1√
q2 + r2

∫ t

0
f (τ) dτ.

(29)

To solve the second differential equation in (25), one has to evaluate the right-hand side,
1

h̄

(
Û−1

S Ĥ I Û S

) = �1

4h̄

[
e−iqηt K̂1,0 + e+iqηt K̂−1,0

]
+

�2

4h̄

[
e−irηt K̂0,1 + e+irηt K̂0,1

]
+

�3

4h̄

[
e−i(q+r)ηt K̂1,1 + e+i(q+r)ηt K̂−1,−1 + e−i(q−r)ηt K̂1,−1 + e+i(q−r)ηt K̂−1,1

]
,

(30)

which is an element of I. The solution of equation (25) then reads

Û I (t) = exp
{−i

[
χ

(1,0)
t K̂1,0 + χ

(−1,0)
t K̂−1,0 + χ

(0,1)
t K̂0,1 + χ

(0,−1)
t K̂0,−1

+ χ
(1,1)
t K̂1,1 + χ

(−1,−1)
t K̂−1,−1 + χ

(1,−1)
t K̂1,−1 + χ

(−1,1)
t K̂−1,1

]}
(31)

with

χ
(u,v)
t = g(u,v)

∫ t

0
e−i(uq+vr)ητ dτ, (u, v) ∈ M (32)

and

g(±1,0) = �1

4h̄
, g(0,±1) = �2

4h̄
, g(±1,±1) = g(±1,∓1) = �3

4h̄
. (33)
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The function ηt is defined in equation (29). Note that the function χ
(−u,−v)
t is the complex

conjugate of χ
(u,v)
t :

χ
(−u,−v)
t = χ

(u,v)
t

∗
. (34)

Time-independent fields

So far, the expressions are valid for an arbitrary, time-dependent field f . For the time-
independent case, f = const, the integration of (29) yields

η
(1)
t = qf√

q2 + r2
t and η

(2)
t = rf√

q2 + r2
t. (35)

Defining the Bloch time TB for the two-dimensional system via

TB = 2π

f

√
q2 + r2 (36)

and the Bloch frequency by ωB = 2π/TB , the evolution operator ÛS(t) can be written as

Û S(t) = e−iωB(qN̂1+rN̂2)t . (37)

The functions χ
(u,v)
t can also be evaluated directly,

χ
(u,v)
t = g(u,v)

∫ t

0
e−i(uq+vr)ωBτ dτ

=
{

2 g(u,v)

(uq+vr)ωB
sin

(
(uq + vr)ωBt

2

)
e−i(uq+vr)

ωB t

2 for uq + vr 
= 0

g(u,v)t for uq + vr = 0.
(38)

Since both operators N̂j have an integer-valued spectrum, the evolution operator over one
Bloch period simplifies to

Û (TB) = Û S(TB)Û I (TB) = Û I (TB). (39)

Only if the field is not directed along one axis or a main diagonal, the operator Û I (TB) as
defined in (31) is equal to the identity operator, Û I (TB) = Î , since then uq + vr 
= 0 holds for
all (u, v) ∈ M and therefore all functions χ

(u,v)
TB

vanish according to equation (38). Otherwise,

there exists one function χ
(u,v)
TB

with uq+rv = 0, namely χ
(r,−q)

TB
, that does not vanish according

to χ
(r,−q)

TB
= g(r,−q)TB .

In other words, if the coupling in the direction orthogonal to the field vanishes, g(r,−q) = 0,
resp. is not included into the model, the evolution operator over one Bloch period is equal to
the identity operator with the consequence that the dynamics of every initial state is periodic
in time.

In addition, it should be pointed out that in the time-independent case the evolution
operator can be directly written as

Û (t) = exp{−iĤ t/h̄}
= exp{−i[g(1,0)(K̂1,0 + K̂−1,0) + g(1,0)(K̂0,1 + K̂0,−1)

+ g(1,1)(K̂1,1 + K̂−1,−1 + K̂1,−1 + K̂−1,1) + f1N̂1 + f2N̂2]t}

= exp


−i


 ∑

(u,v)∈M

g(u,v)K̂u,v + qωBN̂1 + rωBN̂2


 t


 (40)
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with g(−u,−v) = g(u,v). The connection between this equation and the product form Û (t) =
Û S(t)Û I (t) is given by the application of Taylor’s theorem introduced by Sack [18]:

exp{κ(Â + λB̂)} = eκÂ exp{(λB̂/a)(1 − e−κa)} (41)

where Â is a shift operator, [Â, B̂] = aB̂ and λ, κ, a (a 
= 0) are complex numbers. This
relation can be directly extended to an arbitrary number of commuting shift operators B̂µ with
[Â, B̂µ] = aµB̂µ (aµ 
= 0) and [B̂µ, B̂ν] = 0:

exp

{
κ

(
Â +

∑
µ

λµB̂µ

)}
= eκÂ

∏
µ

exp{(λµB̂µ/aµ)(1 − e−κaµ)}. (42)

Identifying

Â = qN̂1 + rN̂2, B̂µ = K̂(u,v), κ = −iωBt,

λµ = g(u,v)/ωB, aµ = −qu − rv,
(43)

the evolution operator can be written in the product form

Û (t) = exp{−iωB(qN̂1 + rN̂2)t}
∏

(u,v)∈M

exp

{
g(u,v) e−i(qu+rv)ωB t − 1

(qu + rv)ωB

K̂u,v

}
, (44)

which is of course identical to Û (t) = ÛS(t)Û I (t) given in equations (28) and (31).

4. Expectation values

In this section the time evolution of the expectation values is discussed in order to get a better
understanding of the dynamics. The time dependence of the expectation values is derived in
the Heisenberg picture. Using the expressions in equation (27) the following calculations can
be carried out without difficulty; however, the expressions appear somewhat extensive due to
the number of operators involved. The Heisenberg operators for N̂1(t) resp. N̂2(t) read

N̂1(t) = Û−1(t)N̂1Û (t) = Û−1
I (t)N̂1Û I (t)

= N̂1 + i
[
χ

(1,0)
t K̂1,0 − χ

(−1,0)
t K̂−1,0 + χ

(1,1)
t K̂1,1 − χ

(−1,−1)
t K̂−1,−1

+ χ
(1,−1)
t K̂1,−1 − χ

(−1,1)
t K̂−1,1

]
, (45)

N̂2(t) = Û−1
I (t)N̂2Û I (t) = N̂2 + i

[
χ

(0,1)
t K̂0,1 − χ

(0,−1)
t K̂0,−1

+ χ
(1,1)
t K̂1,1 − χ

(−1,−1)
t K̂−1,−1 − χ

(1,−1)
t K̂1,−1 + χ

(−1,1)
t K̂−1,1

]
. (46)

Operators in the Heisenberg picture are indicated in the notation by the explicit time argument.
The only differences between the operators N̂1(t) and N̂2(t) are the changed sign for the term
with the operators K̂1,−1 and K̂−1,1 and the expressions χ

(0,±1)
t K̂0,±1 instead of χ

(±1,0)
t K̂±1,0.

More involved is the calculation of N̂2
1(t) = [N̂1(t)]2, which can be obtained by squaring

equation (45):

N̂2
1 (t) = N̂2

1 + 2
∣∣χ(1,0)

t

∣∣2 + 2
∣∣χ(1,1)

t

∣∣2 + 2
∣∣χ(1,−1)

t

∣∣2 − (
χ

(1,0)2
t + 2χ

(1,1)
t χ

(1−1)
t

)
K̂2,0

+
(
χ

(−1,0)2
t + 2χ

(−1,−1)
t χ

(−1,1)
t

)
K̂−2,0 − χ

(1,1)2
t K̂2,2 + χ

(−1,−1)2
t K̂−2,−2

−χ
(1,−1)2
t K̂2,−2 + χ

(−1,1)2
t K̂−2,2 + i

[
χ

(1,0)
t Ĵ1 − χ

(−1,0)
t Ĵ

†
1 + χ

(1,1)
t Ĵ1K̂0,1

−χ
(−1,−1)
t Ĵ

†
1K̂0,−1 + χ

(1,−1)
t Ĵ1K̂0,−1 − χ

(−1,1)
t Ĵ

†
1K̂0,1

] − 2χ
(1,0)
t χ

(1,1)
t K̂2,1

− 2χ
(−1,0)
t χ

(−1,−1)
t K̂−2,−1 + 2

(
χ

(1,0)
t χ

(−1,−1)
t + χ

(−1,0)
t χ

(1,−1)
t

)
K̂0,−1

+ 2
(
χ

(−1,0)
t χ

(1,1)
t + χ

(1,0)
t χ

(−1,1)
t

)
K̂0,1 − 2χ

(1,0)
t χ

(1,−1)
t K̂2,−1

− 2χ
(−1,0)
t χ

(−1,1)
t K̂−2,1 + 2χ

(1,1)
t χ

(−1,1)
t K̂0,2 + 2χ

(−1,−1)
t χ

(1,−1)
t K̂0,−2. (47)
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Here, the operator Ĵj is the anti-commutator of N̂j and K̂j ,

Ĵj = [N̂j , K̂j ]+ = N̂j K̂j + K̂j N̂j . (48)

The expression for N̂2
2 (t), obtained by squaring N̂2(t), has the same structure as N̂2

1 (t).
Instead of the functions χ

(±1,0)
t the functions χ

(0,±1)
t appear and, analogously, the indices of

the operators K̂u,v are exchanged.

Time-independent case

Now we turn back to the time-independent case in order to analyse the Bloch oscillations in
more detail. The expectation values for the operators K̂u,v, Ĵ1K̂

v
2 and K̂u

1 Ĵ2 can be decomposed
as

〈K̂u,v〉 = Ku,v = |Ku,v| eiκu,v (49)

〈
Ĵ1K̂

v
2

〉 = Jv = |Jv| eiµv (50)〈
K̂u

1 Ĵ2
〉 = Lu = |Lu| eiνu , (51)

where the operator K̂u
1 resp. K̂v

2 corresponds to K̂u,0 resp. K̂0,v in the alternative notation
(16). The expectation value

〈
K̂u

1 Ĵ2
〉
only appears in the expression for

〈
N̂2

2

〉
t

(cf equation (61)).
All expectation values including only the unitary operators K̂u,v have modulus smaller than 1
except for the eigenstates of these operators where they have exactly modulus 1.

In order to calculate the expectation values for the operators N̂1(t), N̂2(t) and N̂2
1 (t) the

functions χ
(u,v)
t are also decomposed into their moduli and phases,

χ
(u,v)
t = |χ(u,v)

t | e−i(uq+vr)
ωB t

2 and χ
(−u,−v)
t = |χ(u,v)

t | e+i(uq+vr)
ωB t

2 . (52)

Then, the desired expressions for the expectation values read

〈N̂1〉t = 〈N̂1〉0 + 2
∣∣χ(1,0)

t

∣∣|K1,0| sin

(
q

ωBt

2
− κ1,0

)

+ 2
∣∣χ(1,1)

t

∣∣|K1,1| sin

(
(q + r)

ωBt

2
− κ1,1

)

+ 2
∣∣χ(1,−1)

t

∣∣|K1,−1| sin

(
(q − r)

ωBt

2
− κ1,−1

)
, (53)

〈N̂2〉t = 〈N̂2〉0 + 2
∣∣χ(0,1)

t

∣∣|K0,1| sin

(
r
ωBt

2
− κ0,1

)

+ 2
∣∣χ(1,1)

t

∣∣|K1,1| sin

(
(q + r)

ωBt

2
− κ1,1

)

− 2
∣∣χ(1,−1)

t

∣∣|K1,−1| sin

(
(q − r)

ωBt

2
− κ1,−1

)
(54)

and〈
N̂2

1

〉
t
= 〈

N̂2
1

〉
0 + 2

∣∣χ(1,0)
t

∣∣2 [1 − |K2,0| cos

(
2q

ωBt

2
− κ2,0

)]

+ 2
∣∣χ(1,1)

t

∣∣2 [1 − |K2,2| cos

(
2(q + r)

ωBt

2
− κ2,2

)]
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+ 2
∣∣χ(1,−1)

t

∣∣2 [1 − |K2,−2| cos

(
2(q − r)

ωBt

2
− κ2,−2

)]

+ 2
∣∣χ(1,0)

t

∣∣|J0| sin

(
q

ωBt

2
− µ0

)
+ 2

∣∣χ(1,1)
t

∣∣|J1| sin

(
(q + r)

ωBt

2
− µ1

)

+ 2
∣∣χ(1,−1)

t

∣∣|J−1| sin

(
(q − r)

ωBt

2
− µ−1

)

− 4
∣∣χ(1,0)

t χ
(1,1)
t

∣∣|K2,1| cos

(
(2q + r)

ωBt

2
− κ2,1

)

+ 4
∣∣χ(1,0)

t χ
(1,1)
t

∣∣|K0,1| cos

(
r
ωBt

2
− κ0,1

)

− 4
∣∣χ(1,1)

t χ
(1,−1)
t

∣∣|K2,0| cos

(
2q

ωBt

2
− κ2,0

)

+ 4
∣∣χ(1,0)

t χ
(1,−1)
t

∣∣|K0,1| cos

(
r
ωBt

2
− κ0,1

)

− 4
∣∣χ(1,0)

t χ
(1,−1)
t

∣∣|K2,−1| cos

(
(2q − r)

ωBt

2
− κ2,−1

)

+ 4
∣∣χ(1,1)

t χ
(1,−1)
t

∣∣|K0,2| cos

(
2r

ωBt

2
− κ0,2

)
. (55)

It should be pointed out again that the functions χ
(u,v)
t depend only on system parameters

(g(u,v) and f ) while |Ku,v| and κu,v resp. |Jv| and µv are determined by the initial state.
As long as the field is not directed along the axes or the main diagonals, i.e. q 
= 0 
= r ,
and q + r 
= 0 
= q − r , the expectation values 〈N̂1〉t , 〈N̂2〉t ,

〈
N̂2

1

〉
t

and
〈
N̂2

2

〉
t

and therefore

the widths �2
Nj

(t) = 〈
N̂2

j

〉
t
− 〈N̂j 〉2

t , j = 1, 2, are periodic in time since all functions χ
(u,v)
t

are periodic according to equation (38). Thus, the results from the one-dimensional case
concerning Bloch oscillations and breathing modes remain valid: a wavepacket performs a
two-dimensional Lissajous-like oscillation which shows no systematic dispersion, i.e. �2

Nj
(t)

is bounded in time.
More interesting is the case that the field is directed along one axis or a diagonal, i.e.

(q, r) = (1, 0), (0, 1), (±1,±1), (∓1,±1). (56)

According to equation (38), the function χ
(r,−q)
t grows linearly in time, χ

(r,−q)
t = g(r,−q)t .

Since the argument (uq + vr)ωBt/2 of the related sin-function in the expressions for the
expectation values 〈N̂j 〉t (cf equations (53), (54)) vanishes for all times t, only the phase factor
κr,−q remains. This has the consequence that the term containing χ

(q,−r)
t in the equation for

〈N̂1〉t resp. 〈N̂2〉t increases linearly in time as far as the corresponding phase factor κu,v does
not vanish either.

Thus (〈N̂1〉t , 〈N̂2〉t ) performs an oscillatory motion (due to the remaining terms) with a
superimposed linear motion orthogonal to the field direction.

For (q, r) = (1, 0) it is clear that the linear motion is orthogonal to the field, since the
linearly growing function

∣∣χ(0,1)
t

∣∣ = ∣∣χ(0,−1)
t

∣∣ appears only in the expression for 〈N̂2〉t . The
same argument holds for (q, r) = (0, 1). If the field is directed along one of the main diagonals
the motion is also orthogonal to the field as can be checked directly. In general, the velocity
of the directed motion is determined via equation (27) by the commutators (17) and can be
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written as

v = 2g(r,−q)|Kr,−q | sin(κr,−q)

(
εr,−q,1

εr,−q,2

)
= 2g(r,−q)|Kr,−q | sin(κr,−q)

(
r

−q

)
. (57)

Independent of the initial state,
〈
N2

j

〉
t

grows quadratically in time due to the second up to
fourth term in equation (55). The contribution from the other terms is at most linear. The case
that the factors cancel each other can be excluded because this requires |Ku,v| = 1, which is
only fulfilled if the initial state of the system is an eigenstate of the shift operator K̂u,v . But
these states are delocalized in a basis of Wannier states and can therefore be excluded. With〈
N̂2

j

〉
also the variance �2

Nj
(t) = 〈

N̂2
j

〉
t
− 〈N̂j 〉2

t , j = 1, 2, grows quadratically in time. Only
for states with special initial phases κu,v and amplitudes |Ku,v| a localization effect can be
achieved. But this is not a systematic effect, i.e. not depending on the field and the coupling
constants, but only caused by a specially prepared initial state. In section 6, this behaviour is
analysed in more detail for a Gaussian initial state.

Separable case

Before we conclude this section, a brief discussion of the separable case, where only couplings
along the axes are taken into account, allows further insight into the dynamics. Here, we also
assume that the field is time independent. For the separable system with �3 = 0 in the
Hamiltonian (15), the expressions for the expectation values, equations (53) and (54), simplify
drastically:

〈N̂1〉t = 〈N̂1〉0 + 2|χ(1,0)
t ||K1,0| sin

(
q

ωBt

2
− κ1,0

)
q 
=0= 〈N̂1〉0 +

�1

qωB

|K1,0| sin

(
q

ωBt

2

)
sin

(
q

ωBt

2
− κ1,0

)

= 〈N̂1〉0 +
�1

2qωB

|K1,0|
[
cos

(
qωBt − κ1,0

) − cos(κ1,0)
]
, (58)

〈N̂2〉t = 〈N̂2〉0 + 2|χ(0,1)
t ||K0,1| sin

(
r
ωBt

2
− κ0,1

)
r 
=0= 〈N̂2〉0 +

�2

2rωB

|K0,1|
[
cos

(
rωBt − κ0,1

) − cos(κ0,1)
]
. (59)

If the field is not directed along one of the axes, the result is a Lissajous-like oscillation of the
wavepacket depending on the field direction (q, r) and both initial phases κ1,0 and κ0,1 (and
not only the phase difference �φ = κ1,0 − κ0,1). According to equation (54), the expectation
values for N̂2

j (t) read

〈
N̂2

1

〉
t
= 〈

N̂2
1

〉
0 + 2

∣∣χ(1,0)
t

∣∣2 [1 − |K2,0| cos

(
2q

ωBt

2
− κ2,0

)]

+ 2
∣∣χ(1,0)

t

∣∣|J0| sin

(
q

ωBt

2
− µ0

)
, (60)

〈
N̂2

2

〉
t
= 〈

N̂2
2

〉
0 + 2

∣∣χ(0,1)
t

∣∣2 [1 − |K0,2| cos

(
2r

ωBt

2
− κ0,2

)]

+ 2
∣∣χ(0,1)

t

∣∣|L0| sin

(
r
ωBt

2
− ν0

)
. (61)
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These are periodic functions of time if the field direction is not along one of the axes. The
variances �2

N̂j
(t) can be calculated directly:

�2
N̂1

(t) = �2
N̂1

(0) + 2
∣∣χ(1,0)

t

∣∣2 [1 − |K2,0| cos

(
2q

ωBt

2
− κ2,0

)

− 2|K1,0|2 sin2

(
q

ωBt

2
− κ1,0

)]
+ 2

∣∣χ(1,0)
t

∣∣ [|J0| sin

(
q

ωBt

2
− µ0

)

− |K1,0|〈N̂1〉0 sin

(
q

ωBt

2
− µ1,0

)]
, (62)

�2
N̂2

(t) = �2
N̂2

(0) + 2
∣∣χ(0,1)

t

∣∣2 [1 − |K0,2| cos

(
2r

ωBt

2
− κ0,2

)

− 2|K0,1|2 sin2

(
r
ωBt

2
− κ0,1

)]
+ 2

∣∣χ(0,1)
t

∣∣ [|L0| sin

(
q

ωBt

2
− ν0

)

− |K0,1|〈N̂2〉0 sin

(
r
ωBt

2
− µ0

)]
. (63)

For a field direction along one axis, e.g. the first, a wavepacket shows dispersion in the
direction of the second axis due to χ

(0,1)
t = g(0,1)t . Besides, 〈N̂2〉t can also increase linearly

in time, if the initial state provides a phase κ0,1 
= nπ, n ∈ Z.
Concluding, for a field directed along an axis or the main diagonal the Bloch oscillation

of the centre of mass of a wavepacket is superposed by a directed motion orthogonal to
the field. Only for special initial conditions this directed motion is not present and one
finds strictly periodic oscillations. Nevertheless, the projection of the motion onto the field
direction is always periodic. For other field directions the Bloch oscillations still remain, since
the couplings orthogonal to the field, g(r,−q), are not included into this tight-binding model.
However, extending the tight-binding approximation by taking into account the coupling to
more directions leads to a superposed directed motion also in these cases, as will be seen in
the next section.

5. Single-band models

As in the one-dimensional case (cf section 9 in [6]) one can add an arbitrary number of
additional shift operators

K̂1K̂1K̂2, K̂1K̂2K̂2, K̂1K̂1K̂1K̂2, K̂1K̂1K̂
†
2, . . . (64)

to the algebra. Physically these operators couple adjacent sites in the directions given by
their indices (K̂u,v , with u and v coprime, is the coupling in direction (u, v)) or describe the
coupling to further sites (K̂nu,nv , with n ∈ N and u, v coprime, is the coupling to the nth site
in the direction (u, v)). Generalizing expression (18), the Lie algebra can be written as

L = {N̂1, N̂2, K̂u,v|(u, v) ∈ M} with M = Z
2 \ {(0, 0)}. (65)

The corresponding Hamiltonian is a direct extension of the tight-binding Hamiltonian and
reads

H =
∑

(u,v)∈M

g(u,v)K̂u,v + f1N̂1 + f2N̂2 with g(u,v) = g(−u,−v). (66)
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The evolution operator can be calculated in the same way as in section 3, Û (t) = Û S(t)Û I (t)

with Û S(t) defined in equation (28) and

Û I (t) = exp


−i

∑
(u,v)∈M

χ
(u,v)
t K̂u,v


 . (67)

Instead of only eight functions χ
(u,v)
t in the tight-binding approximation, one gets infinitely

many functions. Therefore, for every rational field direction (q, r) there exist pairs
(nr,−nq), n ∈ Z, so that χ

(u,v)
t = g(u,v)t with the same consequences as in the tight-binding

approximation. In particular, the velocity of the directed motion is given by equation (57).
But one has to keep in mind that for realistic potentials, as investigated for example in [10],
the factors g(u,v) decrease exponentially with increasing |u| + |v| so that the directed motion
and the dispersion are very small compared to the oscillation.

6. Case study of a Gaussian initial distribution in a Wannier basis

In this section, the results from section 4 will be applied to an explicit representation of the
initial wavepacket in a basis of Wannier functions,

|ψ(t)〉 =
∑
m,n

cm,n(t)|m, n〉. (68)

The expectation values can be calculated using expressions (53), (54) and (55). The
expectation values 〈K̂u,v〉 = Ku,v can be evaluated as

〈K̂u,v〉 = 〈ψ |K̂u
1 K̂v

2 |ψ〉 =
∑
m,n

c∗
m,ncm+u,n+v (69)

with cm,n = cm,n(0) (cf equation (5)). In the following, we will assume that the initial
distribution is Gaussian, i.e.

cm,n = α exp

{
−m2 + n2

4σ 2
+ i(k1m + k2n)

}
(70)

with normalization constant α ∈ R. Then, the expectation value (69) can be written as

〈Ku,v〉 = α2 ei(k1u+k2v)
∑
m,n

e−(m2+n2+(m+u)2+(n+v)2)/(4σ 2)

= |Ku,v| ei(k1u+k2v) (71)

and the phase factor in equation (49) is given by

κu,v = k1u + k2v. (72)

Reconsidering the expressions for 〈N̂1〉t and 〈N̂2〉t in equations (53) and (54), the behaviour
of the wavepacket depends crucially on this phase κu,v . The function χ

(r,−q)
t , which describes

the coupling strength in the direction orthogonal to the field, grows linearly in time according
to equation (38). Then, depending on the argument of the related sine function, sin(κr,−q), this
linearly growing term contributes to the expectation value or is cancelled by sin(κr,−q) = 0.
If κr,−q is an integer multiple of π , this term does not contribute and the expectation value is
periodic in time. This means that for a given field direction (q, r) one has to make sure that
the condition

κr,−q = k1r − k2q = nπ with n ∈ Z (73)
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Figure 1. Left: time dependence of the expectation values (〈N1〉t , 〈N2〉t ) for a field direction
q = r = 1 and three different initial conditions. The dashed line shows the trajectory
for (k1, k2) = (π/2, 0), the dashed-dotted line for (k1, k2) = (π, π) and the solid line for
(k1, k2) = (π/2, −π/2). Right: trajectories (〈x〉, 〈y〉) obtained by a direct integration of the
time-dependent Schrödinger equation and the Hamiltonian (1) with potential (80) for the same
parameters and initial conditions as on the left-hand side.

is fulfilled to get a periodic centre of mass motion. If this condition is not fulfilled, the
periodic motion is superposed by a directed motion orthogonal to the field. The left-
hand side of figure 1 illustrates this behaviour. Displayed are the expectation values 〈N̂1〉
and 〈N̂2〉 as a function of time which are obtained by a direct numerical integration of
the time-dependent Schrödinger equation for the Hamiltonian (15) and parameter values
h̄ = 2.81/2π, F = 0.1,�1 = �2 = 1/4,�3 = 0.008.

Independent of the phase (72) of the initial wavepacket, the width of the wavepacket
increases quadratically in time. Considering for example equation (55) and a field along the
second axis or one of the main diagonals this can be seen in the following way. The relevant
term for the quadratical dispersion has the form

2
∣∣χ(r,−q)

t

∣∣2(1 − |K2r,−2q | cos(κ2r,−2q)). (74)

Together with the relevant term for 〈N1〉t ,
2
∣∣χ(r,−q)

t

∣∣|Kr,−q | sin(κr,−q) (75)

one gets for the width of the wavepacket

�2
N̂1

(t) = 〈
N̂2

1

〉
t
− 〈N̂1〉2

t

≈ 2
∣∣χ(r,−q)

t

∣∣2[1 − |K2r,−2q | cos(κ2r,−2q) − 2|Kr,−q |2 sin2(κr,−q)]. (76)

The phase factor κ2r,−2q can be written as 2κr,−q using equation (72) so that the following
inequality holds:

1 − |K2r,−2q | cos(κ2r,−2q) − 2|Kr,−q |2 sin2(κr,−q)

= 1 − (2|Kr,−q |2 − |K2r,−2q |) sin2(κr,−q) − |K2r,−2q | cos2(κr,−q) > 0. (77)

Here we also used that |Ku,v| < 1 and 0 < 2|Ku,v|2 − |K2u,2v| < 1 for a localized initial
state. The second relation can be shown by using equation (71) and the relations for the
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ϑ-function. Inserting this inequality into equation (76) shows that the quadratically increasing
term |χ(r,−q)

t |2 contributes to �2
N̂1

(t) for every value of Ku,v resp. κu,v . Therefore, every
Gaussian initial wavepacket shows a quadratic dispersion.

The tight-binding results can be compared with a direct integration of the time-dependent
Schrödinger equation for the Hamiltonian (1). The right-hand side of figure 1 shows the
trajectories of the expectation values (〈x〉t , 〈y〉t ) for a Gaussian wavepacket

ψ(x, y) = (2πσ 2)−1/2 e−(x2+y2)/4σ 2+ik1x+ik2y (78)

with σ = 10π , which is projected onto the first Bloch band:

ψ1(x, y) = 〈x, y|ψ1〉 =
∑
m,n

〈m, n|ψ〉〈x, y|m, n〉 (79)

for three initial momenta (k1, k2) = (π/2, 0), (π, π), (π/2,−π/2). The system parameters
are h̄ = 2.81/2π and F = 0.1 in scaled units. The potential

V (x, y) = cos(2πx) + cos(2πy) − cos(2πx) cos(2πy) (80)

generates a lowest Bloch band in this dispersion relation with width �1 = �2 = 1/4 along
the axes and a width �3 = 0.008 along the main diagonals, so that the results can be directly
compared with the tight-binding calculations on the left-hand side of figure 1. The small
distortion compared to the tight-binding results can be explained by the couplings to further
sites in the single-band model.

7. Concluding remarks

In the present paper we have investigated Bloch oscillations in a two-dimensional tight-
binding resp. single-band model. Using an algebraic approach, the evolution operator has
been expressed in a product form for an arbitrary time-dependent field. It has been shown
analytically for the expectation values that an initial state in general does not perform a
strictly periodic centre of mass Bloch oscillations in the single-band approximation. While
the projection of this motion onto the field direction still oscillates, the projection orthogonal
to the field additionally shows a directed motion. Only for special conditions that depend
on the initial wavepacket and not on the system parameters the strict periodicity of the
Bloch oscillations can be restored. The width of a wavepacket behaves similarly: it shows a
systematic quadratical dispersion orthogonal to the field that can only be suppressed for special
initial wavepackets.

Finally, the similarity to the one-dimensional tight-binding system with an additional
harmonic driving, F(t) = F0 + F1 cos ωt , should be emphasized. For an integer ratio between
the Bloch frequency and the driving frequency, ωB = qω (q ∈ N), a wavepacket shows
a systematic dispersion. But, in contrast to the two-dimensional dispersion, the dispersion
can be suppressed by adjusting the field strength F1 and the driving frequency ω (dynamical
localization) [19–21]. Therefore, the two-dimensional tight-binding system with an additional
time-periodic driving can be expected to show a multitude of interesting phenomena which
have to be analysed in more detail.
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